General mathematical functions#

acos#

Name#

acos(3) - [MATHEMATICS:TRIGONOMETRIC] arccosine (inverse cosine) function

Syntax#

  result = acos(x)

   TYPE(kind=KIND),elemental :: acos

   TYPE(kind=KIND,intent(in) :: x

where TYPE may be real or complex and KIND may be any KIND supported by the associated type.

Description#

acos(x) computes the arccosine of x (inverse of cos(x)).

Arguments#

  • x

    Must be type real or complex. If the type is real, the value must satisfy |x| <= 1.

Returns#

The return value is of the same type and kind as x. The real part of the result is in radians and lies in the range 0 <= acos(x%re) <= PI .

Examples#

Sample program:

program demo_acos
use, intrinsic :: iso_fortran_env, only : real_kinds,real32,real64,real128
implicit none
character(len=*),parameter :: all='(*(g0,1x))'
real(kind=real64) :: x = 0.866_real64
real(kind=real64),parameter :: d2r=acos(-1.0_real64)/180.0_real64

    print all,'acos(',x,') is ', acos(x)
    print all,'90 degrees is ', d2r*90.0_real64, ' radians'
    print all,'180 degrees is ', d2r*180.0_real64, ' radians'
    print all,'for reference &
    &PI ~ 3.14159265358979323846264338327950288419716939937510'
    print all,'elemental',acos([-1.0,-0.5,0.0,0.50,1.0])

end program demo_acos

Results:

   acos( .8660000000000000 ) is  .5236495809318289
   90 degrees is  1.570796326794897  radians
   180 degrees is  3.141592653589793  radians
   for reference PI ~ 3.14159265358979323846264338327950288419716939937510
   elemental 3.141593 2.094395 1.570796 1.047198 .000000

Standard#

FORTRAN 77 and later; for a complex argument - Fortran 2008 and later

See Also#

Inverse function: cos(3)

####### fortran-lang intrinsic descriptions (license: MIT) @urbanjost

acosh#

Name#

acosh(3) - [MATHEMATICS:TRIGONOMETRIC] Inverse hyperbolic cosine function

Syntax#

  result = acosh(x)

   TYPE(kind=KIND),elemental :: acosh

   TYPE(kind=KIND,intent(in) :: x

where TYPE may be real or complex and KIND may be any KIND supported by the associated type.

Description#

acosh(x) computes the inverse hyperbolic cosine of x in radians.

Arguments#

  • x

    the type shall be real or complex.

Returns#

The return value has the same type and kind as x.

If x is complex, the imaginary part of the result is in radians and lies between

0 <= aimag(acosh(x)) <= PI

Examples#

Sample program:

program demo_acosh
use,intrinsic :: iso_fortran_env, only : dp=>real64,sp=>real32
implicit none
real(kind=dp), dimension(3) :: x = [ 1.0d0, 2.0d0, 3.0d0 ]
   write (*,*) acosh(x)
end program demo_acosh

Results:

 0.000000000000000E+000   1.31695789692482        1.76274717403909

Standard#

Fortran 2008 and later

See Also#

Inverse function: cosh(3)

####### fortran-lang intrinsic descriptions (license: MIT) @urbanjost

asin#

Name#

asin(3) - [MATHEMATICS:TRIGONOMETRIC] Arcsine function

Syntax#

result = asin(x)

    elemental TYPE(kind=KIND) function asin(x)
    TYPE(kind=KIND) :: x

where the returned value has the kind of the input value and TYPE may be real or complex

Description#

asin(x) computes the arcsine of its argument x.

The arcsine is the inverse function of the sine function. It is commonly used in trigonometry when trying to find the angle when the lengths of the hypotenuse and the opposite side of a right triangle are known.

Arguments#

  • x

    The type shall be either real and a magnitude that is less than or equal to one; or be complex.

Returns#

  • result

    The return value is of the same type and kind as x. The real part of the result is in radians and lies in the range -PI/2 <= asin(x) <= PI/2.

Examples#

The arcsine will allow you to find the measure of a right angle when you know the ratio of the side opposite the angle to the hypotenuse.

So if you knew that a train track rose 1.25 vertical miles on a track that was 50 miles long, you could determine the average angle of incline of the track using the arcsine. Given

 sin(theta) = 1.25 miles/50 miles (opposite/hypotenuse)
program demo_asin
use, intrinsic :: iso_fortran_env, only : dp=>real64
implicit none
! value to convert degrees to radians
real(kind=dp),parameter :: D2R=acos(-1.0_dp)/180.0_dp
real(kind=dp)           :: angle, rise, run
character(len=*),parameter :: all='(*(g0,1x))'
  ! given sine(theta) = 1.25 miles/50 miles (opposite/hypotenuse)
  ! then taking the arcsine of both sides of the equality yields
  ! theta = arcsine(1.25 miles/50 miles) ie. arcsine(opposite/hypotenuse)
  rise=1.250_dp
  run=50.00_dp
  angle = asin(rise/run)
  print all, 'angle of incline(radians) = ', angle
  angle = angle/D2R
  print all, 'angle of incline(degrees) = ', angle

  print all, 'percent grade=',rise/run*100.0_dp
end program demo_asin

Results:

    angle of incline(radians) =    2.5002604899361139E-002
    angle of incline(degrees) =    1.4325437375665075
    percent grade=   2.5000000000000000

The percentage grade is the slope, written as a percent. To calculate the slope you divide the rise by the run. In the example the rise is 1.25 mile over a run of 50 miles so the slope is 1.25/50 = 0.025. Written as a percent this is 2.5 %.

For the US, two and 1/2 percent is generally thought of as the upper limit. This means a rise of 2.5 feet when going 100 feet forward. In the US this was the maximum grade on the first major US railroad, the Baltimore and Ohio. Note curves increase the frictional drag on a train reducing the allowable grade.

Standard#

FORTRAN 77 and later, for a complex argument Fortran 2008 or later

See Also#

Inverse function: sin(3)

####### fortran-lang intrinsic descriptions (license: MIT) @urbanjost

asinh#

Name#

asinh(3) - [MATHEMATICS:TRIGONOMETRIC] Inverse hyperbolic sine function

Syntax#

result = asinh(x)

    elemental TYPE(kind=KIND) function asinh(x)
    TYPE(kind=KIND) :: x

Where the returned value has the kind of the input value and TYPE may be real or complex

Description#

asinh(x) computes the inverse hyperbolic sine of x.

Arguments#

  • x

    The type shall be real or complex.

Returns#

The return value is of the same type and kind as x. If x is complex, the imaginary part of the result is in radians and lies between -PI/2 <= aimag(asinh(x)) <= PI/2.

Examples#

Sample program:

program demo_asinh
use,intrinsic :: iso_fortran_env, only : dp=>real64,sp=>real32
implicit none
real(kind=dp), dimension(3) :: x = [ -1.0d0, 0.0d0, 1.0d0 ]

    write (*,*) asinh(x)

end program demo_asinh

Results:

  -0.88137358701954305  0.0000000000000000  0.88137358701954305     

Standard#

Fortran 2008 and later

See Also#

Inverse function: sinh(3)

####### fortran-lang intrinsic descriptions

atan#

Name#

atan(3) - [MATHEMATICS:TRIGONOMETRIC] Arctangent function

Syntax#

  - result = __atan(y, x)__

   TYPE(kind=KIND):: atan
   TYPE(kind=KIND,intent(in) :: x
   TYPE(kind=KIND,intent(in),optional :: y

where TYPE may be real or complex and KIND may be any KIND supported by the associated type. If y is present x is _real`.

Description#

atan(x) computes the arctangent of x.

Arguments#

  • x

    The type shall be real or complex; if y is present, x shall be real.

  • y

    Shall be of the same type and kind as x. If x is zero, y must not be zero.

Returns#

The returned value is of the same type and kind as x. If y is present, the result is identical to atan2(y,x). Otherwise, it is the arc tangent of x, where the real part of the result is in radians and lies in the range -PI/2 <= atan(x) <= PI/2

Examples#

Sample program:

program demo_atan
use, intrinsic :: iso_fortran_env, only : real_kinds, &
 & real32, real64, real128
implicit none
character(len=*),parameter :: all='(*(g0,1x))'
real(kind=real64),parameter :: &
 Deg_Per_Rad = 57.2957795130823208767981548_real64
real(kind=real64) :: x 
    x=2.866_real64
    print all, atan(x)

    print all, atan( 2.0d0, 2.0d0),atan( 2.0d0, 2.0d0)*Deg_Per_Rad
    print all, atan( 2.0d0,-2.0d0),atan( 2.0d0,-2.0d0)*Deg_Per_Rad
    print all, atan(-2.0d0, 2.0d0),atan(-2.0d0, 2.0d0)*Deg_Per_Rad
    print all, atan(-2.0d0,-2.0d0),atan(-2.0d0,-2.0d0)*Deg_Per_Rad

end program demo_atan

Results:

   1.235085437457879
   .7853981633974483 45.00000000000000
   2.356194490192345 135.0000000000000
   -.7853981633974483 -45.00000000000000
   -2.356194490192345 -135.0000000000000

Standard#

FORTRAN 77 and later for a complex argument; and for two arguments Fortran 2008 or later

See Also#

atan2(3), tan(3)

####### fortran-lang intrinsic descriptions (license: MIT) @urbanjost

atan2#

Name#

atan2(3) - [MATHEMATICS:TRIGONOMETRIC] Arctangent function

Syntax#

result = atan2(y, x)

Description#

atan2(y, x) computes the arctangent of the complex number ( x + i y ) .

This function can be used to transform from Cartesian into polar coordinates and allows to determine the angle in the correct quadrant. To convert from Cartesian Coordinates (x,y) to polar coordinates

(r,theta): $$ \begin{aligned} r &= \sqrt{x2 + y2} \ \theta &= \tan**{-1}(y / x) \end{aligned} $$

Arguments#

  • y

    The type shall be real.

  • x

    The type and kind type parameter shall be the same as y. If y is zero, then x must be nonzero.

Returns#

The return value has the same type and kind type parameter as y. It is the principal value of the complex number (x + i, y). If x is nonzero, then it lies in the range -PI <= atan(x) <= PI. The sign is positive if y is positive. If y is zero, then the return value is zero if x is strictly positive, PI if x is negative and y is positive zero (or the processor does not handle signed zeros), and -PI if x is negative and Y is negative zero. Finally, if x is zero, then the magnitude of the result is PI/2.

Examples#

Sample program:

program demo_atan2
use,intrinsic :: iso_fortran_env, only : dp=>real64,sp=>real32
implicit none
real(kind=sp) :: x = 1.e0_sp, y = 0.5e0_sp, z
   z = atan2(y,x)
   write(*,*)x,y,z
end program demo_atan2

Results:

      1.00000000      0.500000000      0.463647604    

Standard#

FORTRAN 77 and later

####### fortran-lang intrinsic descriptions

atanh#

Name#

atanh(3) - [MATHEMATICS:TRIGONOMETRIC] Inverse hyperbolic tangent function

Syntax#

result = atanh(x)

Description#

atanh(x) computes the inverse hyperbolic tangent of x.

Arguments#

  • x

    The type shall be real or complex.

Returns#

The return value has same type and kind as x. If x is complex, the imaginary part of the result is in radians and lies between

-PI/2 <= aimag(atanh(x)) <= PI/2

Examples#

Sample program:

program demo_atanh
implicit none
real, dimension(3) :: x = [ -1.0, 0.0, 1.0 ]

   write (*,*) atanh(x)

end program demo_atanh

Results:

   -Infinity   0.00000000             Infinity

Standard#

Fortran 2008 and later

See Also#

Inverse function: tanh(3)

####### fortran-lang intrinsic descriptions

cos#

Name#

cos(3) - [MATHEMATICS:TRIGONOMETRIC] Cosine function

Syntax#

result = cos(x)

   TYPE(kind=KIND),elemental :: cos
   TYPE(kind=KIND,intent(in) :: x

where TYPE may be real or complex and KIND may be any KIND supported by the associated type.

Description#

cos(x) computes the cosine of an angle x given the size of the angle in radians.

The cosine of a real value is the ratio of the adjacent side to the hypotenuse of a right-angled triangle.

Arguments#

  • x

    The type shall be real or complex. x is assumed to be in radians.

Returns#

The return value is of the same type and kind as x.

If x is of the type real, the return value lies in the range -1 <= cos(x) <= 1 .

Examples#

Sample program:

program demo_cos
implicit none
doubleprecision,parameter :: PI=atan(1.0d0)*4.0d0
   write(*,*)'COS(0.0)=',cos(0.0)
   write(*,*)'COS(PI)=',cos(PI)
   write(*,*)'COS(PI/2.0d0)=',cos(PI/2.0d0),' EPSILON=',epsilon(PI)
   write(*,*)'COS(2*PI)=',cos(2*PI)
   write(*,*)'COS(-2*PI)=',cos(-2*PI)
   write(*,*)'COS(-2000*PI)=',cos(-2000*PI)
   write(*,*)'COS(3000*PI)=',cos(3000*PI)
end program demo_cos

Results:

   COS(0.0)=        1.00000000
   COS(PI)=        -1.0000000000000000
   COS(PI/2.0d0)=   6.1232339957367660E-017
   EPSILON=         2.2204460492503131E-016
   COS(2*PI)=       1.0000000000000000
   COS(-2*PI)=      1.0000000000000000
   COS(-2000*PI)=   1.0000000000000000

Standard#

FORTRAN 77 and later

See Also#

acos(3), sin(3), tan(3)

####### fortran-lang intrinsic descriptions

cosh#

Name#

cosh(3) - [MATHEMATICS:TRIGONOMETRIC] Hyperbolic cosine function

Syntax#

    result = cosh(x)

     TYPE(kind=KIND) elemental function cosh(x)
     TYPE(kind=KIND),intent(in) :: x

where TYPE may be real or complex and KIND may be any supported kind for the associated type. The returned value will be the same type and kind as the input value x.

Description#

cosh(x) computes the hyperbolic cosine of x.

Arguments#

  • x

    The type shall be real or complex.

Returns#

The return value has same type and kind as x. If x is complex, the imaginary part of the result is in radians.

If x is real, the return value has a lower bound of one, cosh(x) >= 1.

Examples#

Sample program:

program demo_cosh
use, intrinsic :: iso_fortran_env, only : &
 & real_kinds, real32, real64, real128
implicit none
real(kind=real64) :: x = 1.0_real64
    x = cosh(x)
end program demo_cosh

Standard#

FORTRAN 77 and later, for a complex argument - Fortran 2008 or later

See Also#

Inverse function: acosh(3)

####### fortran-lang intrinsic descriptions

sin#

Name#

sin(3) - [MATHEMATICS:TRIGONOMETRIC] Sine function

Syntax#

result = sin(x)

    elemental TYPE(kind=KIND) function sin(x)
    TYPE(kind=KIND) :: x

Where the returned value has the kind of the input value and TYPE may be real or complex

Description#

sin(x) computes the sine of an angle given the size of the angle in radians.

The sine of an angle in a right-angled triangle is the ratio of the length of the side opposite the given angle divided by the length of the hypotenuse.

Arguments#

  • x

    The type shall be real or complex in radians.

Returns#

  • result

    The return value has the same type and kind as x.

Examples#

Sample program:

program sample_sin
implicit none
real :: x = 0.0
   x = sin(x)
end program sample_sin

Haversine Formula#

From the article on “Haversine formula” in Wikipedia:

The haversine formula is an equation important in navigation,
giving great-circle distances between two points on a sphere from
their longitudes and latitudes.

So to show the great-circle distance between the Nashville International Airport (BNA) in TN, USA, and the Los Angeles International Airport (LAX) in CA, USA you would start with their latitude and longitude, commonly given as

BNA: N 36 degrees 7.2',   W 86 degrees 40.2'
LAX: N 33 degrees 56.4',  W 118 degrees 24.0'

which converted to floating-point values in degrees is:

     Latitude Longitude

   - BNA
     36.12, -86.67

   - LAX
     33.94, -118.40

And then use the haversine formula to roughly calculate the distance along the surface of the Earth between the locations:

Sample program:

program demo_sin
implicit none
real :: d
    d = haversine(36.12,-86.67, 33.94,-118.40) ! BNA to LAX
    print '(A,F9.4,A)', 'distance: ',d,' km'
contains
function haversine(latA,lonA,latB,lonB) result (dist)
!
! calculate great circle distance in kilometers
! given latitude and longitude in degrees
!
real,intent(in) :: latA,lonA,latB,lonB
real :: a,c,dist,delta_lat,delta_lon,lat1,lat2
real,parameter :: radius = 6371 ! mean earth radius in kilometers,
! recommended by the International Union of Geodesy and Geophysics

! generate constant pi/180
real, parameter :: deg_to_rad = atan(1.0)/45.0
   delta_lat = deg_to_rad*(latB-latA)
   delta_lon = deg_to_rad*(lonB-lonA)
   lat1 = deg_to_rad*(latA)
   lat2 = deg_to_rad*(latB)
   a = (sin(delta_lat/2))**2 + &
          & cos(lat1)*cos(lat2)*(sin(delta_lon/2))**2
   c = 2*asin(sqrt(a))
   dist = radius*c
end function haversine
end program demo_sin

Results:

    distance: 2886.4446 km

Standard#

FORTRAN 77 and later

See Also#

asin(3), cos(3), tan(3)

####### fortran-lang intrinsic descriptions (license: MIT) @urbanjost

sinh#

Name#

sinh(3) - [MATHEMATICS:TRIGONOMETRIC] Hyperbolic sine function

Syntax#

result = sinh(x)

    elemental TYPE(kind=KIND) function sinh(x)
    TYPE(kind=KIND) :: x

Where the returned value has the kind of the input value and TYPE may be real or complex

Description#

sinh(x) computes the hyperbolic sine of x.

The hyperbolic sine of x is defined mathematically as:

sinh(x) = (exp(x) - exp(-x)) / 2.0

If x is of type complex its imaginary part is regarded as a value in radians.

Arguments#

  • x

    The type shall be real or complex.

Returns#

The return value has same type and kind as x.

Examples#

Sample program:

program demo_sinh
use, intrinsic :: iso_fortran_env, only : &
& real_kinds, real32, real64, real128
implicit none
real(kind=real64) :: x = - 1.0_real64
real(kind=real64) :: nan, inf
character(len=20) :: line

   print *, sinh(x)
   print *, (exp(x)-exp(-x))/2.0

   ! sinh(3) is elemental and can handle an array
   print *, sinh([x,2.0*x,x/3.0])

   ! a NaN input returns NaN
   line='NAN'
   read(line,*) nan
   print *, sinh(nan)

   ! a Inf input returns Inf
   line='Infinity'
   read(line,*) inf
   print *, sinh(inf)

   ! an overflow returns Inf
   x=huge(0.0d0)
   print *, sinh(x)

end program demo_sinh

Results:

  -1.1752011936438014     
  -1.1752011936438014     
  -1.1752011936438014       -3.6268604078470190      -0.33954055725615012     
                       NaN
                  Infinity
                  Infinity

Standard#

Fortran 95 and later, for a complex argument Fortran 2008 or later

See Also#

asinh(3)

####### fortran-lang intrinsic descriptions

tan#

Name#

tan(3) - [MATHEMATICS:TRIGONOMETRIC] Tangent function

Syntax#

result = tan(x)

Description#

tan(x) computes the tangent of x.

Arguments#

  • x

    The type shall be real or complex.

Returns#

The return value has the same type and kind as x.

Examples#

Sample program:

program demo_tan
use, intrinsic :: iso_fortran_env, only : real_kinds, &
& real32, real64, real128
implicit none
real(kind=real64) :: x = 0.165_real64
     write(*,*)x, tan(x)
end program demo_tan

Results:

     0.16500000000000001       0.16651386310913616     

Standard#

FORTRAN 77 and later. For a complex argument, Fortran 2008 or later.

See Also#

atan(3), cos(3), sin(3)

####### fortran-lang intrinsic descriptions

tanh#

Name#

tanh(3) - [MATHEMATICS:TRIGONOMETRIC] Hyperbolic tangent function

Syntax#

x = tanh(x)

Description#

tanh(x) computes the hyperbolic tangent of x.

Arguments#

  • x

    The type shall be real or complex.

Returns#

The return value has same type and kind as x. If x is complex, the imaginary part of the result is in radians. If x is real, the return value lies in the range

      -1 <= tanh(x) <= 1.

Examples#

Sample program:

program demo_tanh
use, intrinsic :: iso_fortran_env, only : &
& real_kinds, real32, real64, real128
implicit none
real(kind=real64) :: x = 2.1_real64
   write(*,*)x, tanh(x)
end program demo_tanh

Results:

      2.1000000000000001       0.97045193661345386     

Standard#

FORTRAN 77 and later, for a complex argument Fortran 2008 or later

See Also#

atanh(3)

####### fortran-lang intrinsic descriptions

random_number#

Name#

random_number(3) - [MATHEMATICS:RANDOM] Pseudo-random number

Syntax#

   random_number(harvest)

Description#

Returns a single pseudorandom number or an array of pseudorandom numbers from the uniform distribution over the range 0 <= x < 1.

Arguments#

  • harvest

    Shall be a scalar or an array of type real.

Examples#

Sample program:

program demo_random_number
use, intrinsic :: iso_fortran_env, only : dp=>real64
implicit none
integer, allocatable :: seed(:)
integer              :: n
integer              :: first,last
integer              :: i
integer              :: rand_int
integer,allocatable  :: count(:)
real(kind=dp)        :: rand_val
   call random_seed(size = n)
   allocate(seed(n))
   call random_seed(get=seed)
   first=1
   last=10
   allocate(count(last-first+1))
   ! To have a discrete uniform distribution on the integers 
   ! [first, first+1, ..., last-1, last] carve the continuous
   ! distribution up into last+1-first equal sized chunks, 
   ! mapping each chunk to an integer.
   !
   ! One way is:
   !   call random_number(rand_val)
   ! choose one from last-first+1 integers
   !   rand_int = first + FLOOR((last+1-first)*rand_val)
      count=0
      ! generate a lot of random integers from 1 to 10 and count them.
      ! with a large number of values you should get about the same
      ! number of each value
      do i=1,100000000
         call random_number(rand_val)
         rand_int=first+floor((last+1-first)*rand_val)
         if(rand_int.ge.first.and.rand_int.le.last)then
            count(rand_int)=count(rand_int)+1
         else
            write(*,*)rand_int,' is out of range'
         endif
      enddo
      write(*,'(i0,1x,i0)')(i,count(i),i=1,size(count))
end program demo_random_number

Results:

   1 10003588
   2 10000104
   3 10000169
   4 9997996
   5 9995349
   6 10001304
   7 10001909
   8 9999133
   9 10000252
   10 10000196

Standard#

Fortran 95 and later

See Also#

random_seed(3)

####### fortran-lang intrinsic descriptions

random_seed#

Name#

random_seed(3) - [MATHEMATICS:RANDOM] Initialize a pseudo-random number sequence

Syntax#

call random_seed(size, put, get)

Description#

Restarts or queries the state of the pseudorandom number generator used by random_number.

If random_seed is called without arguments, it is seeded with random data retrieved from the operating system.

Arguments#

  • size

    (Optional) Shall be a scalar and of type default integer, with intent(out). It specifies the minimum size of the arrays used with the put and get arguments.

  • put

    (Optional) Shall be an array of type default integer and rank one. It is intent(in) and the size of the array must be larger than or equal to the number returned by the size argument.

  • get

    (Optional) Shall be an array of type default integer and rank one. It is intent(out) and the size of the array must be larger than or equal to the number returned by the size argument.

Examples#

Sample program:

program demo_random_seed
implicit none
integer, allocatable :: seed(:)
integer :: n

   call random_seed(size = n)
   allocate(seed(n))
   call random_seed(get=seed)
   write (*, *) seed

end program demo_random_seed

Results:

     -674862499 -1750483360  -183136071  -317862567   682500039
     349459   344020729 -1725483289

Standard#

Fortran 95 and later

See Also#

random_number(3)

####### fortran-lang intrinsic descriptions

exp#

Name#

exp(3) - [MATHEMATICS] Exponential function

Syntax#

result = exp(x)

Description#

exp(x) computes the base “e” exponential of x where “e” is Euler’s constant.

If x is of type complex, its imaginary part is regarded as a value in radians such that (see Euler’s formula):

if cx=(re,im) then exp(cx)=exp(re)*cmplx(cos(im),sin(im),kind=kind(cx))

Since exp(3) is the inverse function of log(3) the maximum valid magnitude of the real component of x is log(huge(x)).

Arguments#

  • x

    The type shall be real or complex.

Returns#

The value of the result is e**x where e is Euler’s constant.

The return value has the same type and kind as x.

Examples#

Sample program:

program demo_exp
implicit none
real :: x , re, im
complex :: cx

   x = 1.0
   write(*,*)"Euler's constant is approximately",exp(x)

   !! complex values
   ! given
   re=3.0
   im=4.0
   cx=cmplx(re,im)

   ! complex results from complex arguments are Related to Euler's formula
   write(*,*)'given the complex value ',cx
   write(*,*)'exp(x) is',exp(cx)
   write(*,*)'is the same as',exp(re)*cmplx(cos(im),sin(im),kind=kind(cx))

   ! exp(3) is the inverse function of log(3) so
   ! the real component of the input must be less than or equal to 
   write(*,*)'maximum real component',log(huge(0.0)) 
   ! or for double precision
   write(*,*)'maximum doubleprecision component',log(huge(0.0d0)) 

   ! but since the imaginary component is passed to the cos(3) and sin(3)
   ! functions the imaginary component can be any real value

end program demo_exp

Results:

 Euler's constant is approximately   2.718282    
 given the complex value  (3.000000,4.000000)
 exp(x) is (-13.12878,-15.20078)
 is the same as (-13.12878,-15.20078)
 maximum real component   88.72284    
 maximum doubleprecision component   709.782712893384     

Standard#

FORTRAN 77 and later

See Also#

####### fortran-lang intrinsic descriptions (license: MIT) @urbanjost

log#

Name#

log(3) - [MATHEMATICS] Logarithm function

Syntax#

result = log(x)

Description#

log(x) computes the natural logarithm of x, i.e. the logarithm to the base “e”.

Arguments#

  • x

    The type shall be real or complex.

Returns#

The return value is of type real or complex. The kind type parameter is the same as x. If x is complex, the imaginary part OMEGA is in the range

-PI < OMEGA <= PI.

Examples#

Sample program:

program demo_log
implicit none
  real(kind(0.0d0)) :: x = 2.71828182845904518d0
  complex :: z = (1.0, 2.0)
  write(*,*)x, log(x)    ! will yield (approximately) 1
  write(*,*)z, log(z)
end program demo_log

Results:

      2.7182818284590451        1.0000000000000000     
   (1.00000000,2.00000000) (0.804718971,1.10714877)

Standard#

FORTRAN 77 and later

####### fortran-lang intrinsic descriptions

log10#

Name#

log10(3) - [MATHEMATICS] Base 10 logarithm function

Syntax#

result = log10(x)
 
   real(kind=KIND) elemental function log10(x)
   real(kind=KIND),intent(in) :: x

Description#

log10(x) computes the base 10 logarithm of x. This is generally called the “common logarithm”.

Arguments#

  • x

    A real value > 0 to take the log of.

Returns#

The return value is of type real . The kind type parameter is the same as x.

Examples#

Sample program:

program demo_log10
use, intrinsic :: iso_fortran_env, only : real_kinds, &
 & real32, real64, real128
implicit none
real(kind=real64) :: x = 10.0_real64

   x = log10(x)
   write(*,'(*(g0))')'log10(',x,') is ',log10(x)

   ! elemental
   write(*, *)log10([1.0, 10.0, 100.0, 1000.0, 10000.0, &
                     & 100000.0, 1000000.0, 10000000.0])

end program demo_log10

Results:

   log10(1.0000000000000000) is 0.0000000000000000
      0.00000000       1.00000000       2.00000000       3.00000000  
      4.00000000       5.00000000       6.00000000       7.00000000    

Standard#

FORTRAN 77 and later

####### fortran-lang intrinsic descriptions

sqrt#

Name#

sqrt(3) - [MATHEMATICS] Square-root function

Syntax#

result = sqrt(x)

   TYPE(kind=KIND) elemental function sqrt(x) result(value)
   TYPE(kind=KIND),intent(in) :: x
   TYPE(kind=KIND) :: value

Where TYPE may be real or complex and KIND may be any kind valid for the declared type.

Description#

sqrt(x) computes the principal square root of x.

In mathematics, a square root of a number x is a number y such that y*y = x.

The number whose square root is being considered is known as the radicand.

Every nonnegative number x has two square roots of the same unique magnitude, one positive and one negative. The nonnegative square root is called the principal square root.

The principal square root of 9 is 3, for example, even though (-3)*(-3) is also 9.

A real, radicand must be positive.

Square roots of negative numbers are a special case of complex numbers, where the components of the radicand need not be positive in order to have a valid square root.

Arguments#

  • x

    If x is real its value must be greater than or equal to zero. The type shall be real or complex.

Returns#

The return value is of type real or complex. The kind type parameter is the same as x.

Examples#

Sample program:

program demo_sqrt
use, intrinsic :: iso_fortran_env, only : real_kinds, &
 & real32, real64, real128
implicit none
real(kind=real64) :: x, x2
complex :: z, z2

   x = 2.0_real64
   z = (1.0, 2.0)
   write(*,*)x,z

   x2 = sqrt(x)
   z2 = sqrt(z)
   write(*,*)x2,z2

   x2 = x**0.5
   z2 = z**0.5 
   write(*,*)x2,z2

end program demo_sqrt

Results:

  2.0000000000000000    (1.00000000,2.00000000)
  1.4142135623730951    (1.27201962,0.786151350)
  1.4142135623730951    (1.27201962,0.786151350)

Standard#

FORTRAN 77 and later

####### fortran-lang intrinsic descriptions (license: MIT) @urbanjost

hypot#

Name#

hypot(3) - [MATHEMATICS] returns the distance between the point and the origin.

Syntax#

result = hypot(x, y)

   real(kind=KIND) elemental function hypot(x,y) result(value)
   real(kind=KIND),intent(in) :: x, y

where x,y,value shall all be of the same kind.

Description#

hypot(x,y) is referred to as the Euclidean distance function. It is equal to sqrt(x2 + y2), without undue underflow or overflow.

In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between two points.

hypot(x,y) returns the distance between the point <x,y> and the origin.

Arguments#

  • x

    The type shall be real.

  • y

    The type and kind type parameter shall be the same as x.

Returns#

The return value has the same type and kind type parameter as x.

The result is the positive magnitude of the distance of the point <x,y> from the origin <0.0,0.0> .

Examples#

Sample program:

program demo_hypot
use, intrinsic :: iso_fortran_env, only : &
 & real_kinds, real32, real64, real128
implicit none
real(kind=real32) :: x, y 
real(kind=real32),allocatable :: xs(:), ys(:)
integer :: i
character(len=*),parameter :: f='(a,/,SP,*(3x,g0,1x,g0:,/))'

   x = 1.e0_real32
   y = 0.5e0_real32

   write(*,*)
   write(*,'(*(g0))')'point <',x,',',y,'> is ',hypot(x,y)
   write(*,'(*(g0))')'units away from the origin'
   write(*,*)

   ! elemental
   xs=[  x,  x**2,  x*10.0,  x*15.0, -x**2  ]
   ys=[  y,  y**2, -y*20.0,  y**2,   -y**2  ]

   write(*,f)"the points",(xs(i),ys(i),i=1,size(xs))
   write(*,f)"have distances from the origin of ",hypot(xs,ys)
   write(*,f)"the closest is",minval(hypot(xs,ys))

end program demo_hypot

Results:

   point <1.00000000,0.500000000> is 1.11803401
   units away from the origin
   
   the points
      +1.00000000 +0.500000000
      +1.00000000 +0.250000000
      +10.0000000 -10.0000000
      +15.0000000 +0.250000000
      -1.00000000 -0.250000000
   have distances from the origin of 
      +1.11803401 +1.03077638
      +14.1421356 +15.0020828
      +1.03077638
   the closest is
      +1.03077638

Standard#

Fortran 2008 and later

####### fortran-lang intrinsic descriptions (license: MIT) @urbanjost

bessel_j0#

Name#

bessel_j0(3) - [MATHEMATICS] Bessel function of the first kind of order 0

Syntax#

    result = bessel_j0(x)

Description#

bessel_j0(x) computes the Bessel function of the first kind of order 0 of x.

Arguments#

  • x

    The type shall be real.

Returns#

The return value is of type real and lies in the range -0.4027 <= bessel(0,x) <= 1. It has the same kind as x.

Examples#

Sample program:

program demo_besj0
use, intrinsic :: iso_fortran_env, only : real_kinds, &
& real32, real64, real128
   implicit none
   real(kind=real64) :: x = 0.0_real64
   x = bessel_j0(x)
   write(*,*)x
end program demo_besj0

Results:

      1.0000000000000000     

Standard#

Fortran 2008 and later

See Also#

bessel_j1(3), bessel_jn(3), bessel_y0(3), bessel_y1(3), bessel_yn(3)

####### fortran-lang intrinsic descriptions

bessel_j1#

Name#

bessel_j1(3) - [MATHEMATICS] Bessel function of the first kind of order 1

Syntax#

    result = bessel_j1(x)

Description#

bessel_j1(x) computes the Bessel function of the first kind of order 1 of x.

Arguments#

  • x

    The type shall be real.

Returns#

The return value is of type real and lies in the range -0.5818 <= bessel(0,x) <= 0.5818 . It has the same kind as x.

Examples#

Sample program:

program demo_besj1
use, intrinsic :: iso_fortran_env, only : real_kinds, &
 & real32, real64, real128
implicit none
real(kind=real64) :: x = 1.0_real64
   x = bessel_j1(x)
   write(*,*)x
end program demo_besj1

Results:

     0.44005058574493350     

Standard#

Fortran 2008 and later

See Also#

bessel_j0(3), bessel_jn(3), bessel_y0(3), bessel_y1(3), bessel_yn(3)

####### fortran-lang intrinsic descriptions

bessel_jn#

Name#

bessel_jn(3) - [MATHEMATICS] Bessel function of the first kind

Syntax#

  result = bessel_jn(n, x)

  result = bessel_jn(n1, n2, x)

Description#

bessel_jn(n, x) computes the Bessel function of the first kind of order n of x. If n and x are arrays, their ranks and shapes shall conform.

bessel_jn(n1, n2, x) returns an array with the Bessel function|Bessel functions of the first kind of the orders n1 to n2.

Arguments#

  • n

    Shall be a scalar or an array of type integer.

  • n1

    Shall be a non-negative scalar of type integer.

  • n2

    Shall be a non-negative scalar of type integer.

  • x

    Shall be a scalar or an array of type real. For bessel_jn(n1, n2, x) it shall be scalar.

Returns#

The return value is a scalar of type real. It has the same kind as x.

Examples#

Sample program:

program demo_besjn
use, intrinsic :: iso_fortran_env, only : real_kinds, &
   & real32, real64, real128
implicit none
real(kind=real64) :: x = 1.0_real64
    x = bessel_jn(5,x)
    write(*,*)x
end program demo_besjn

Results:

      2.4975773021123450E-004

Standard#

Fortran 2008 and later

See Also#

bessel_j0(3), bessel_j1(3), bessel_y0(3), bessel_y1(3), bessel_yn(3)

####### fortran-lang intrinsic descriptions

bessel_y0#

Name#

bessel_y0(3) - [MATHEMATICS] Bessel function of the second kind of order 0

Syntax#

    result = bessel_y0(x)

Description#

bessel_y0(x) computes the Bessel function of the second kind of order 0 of x.

Arguments#

  • x

    The type shall be real.

Returns#

The return value is of type real. It has the same kind as x.

Examples#

Sample program:

program demo_besy0
use, intrinsic :: iso_fortran_env, only : real_kinds, &
& real32, real64, real128
implicit none
  real(kind=real64) :: x = 0.0_real64
  x = bessel_y0(x)
  write(*,*)x
end program demo_besy0

Results:

                    -Infinity

Standard#

Fortran 2008 and later

See Also#

bessel_j0(3), bessel_j1(3), bessel_jn(3), bessel_y1(3), bessel_yn(3)

####### fortran-lang intrinsic descriptions

bessel_y1#

Name#

bessel_y1(3) - [MATHEMATICS] Bessel function of the second kind of order 1

Syntax#

    result = bessel_y1(x)

Description#

bessel_y1(x) computes the Bessel function of the second kind of order 1 of x.

Arguments#

  • x

    The type shall be real.

Returns#

The return value is real. It has the same kind as x.

Examples#

Sample program:

program demo_besy1
use, intrinsic :: iso_fortran_env, only : real_kinds, &
& real32, real64, real128
implicit none
  real(kind=real64) :: x = 1.0_real64
  write(*,*)x, bessel_y1(x)
end program demo_besy1

Standard#

Fortran 2008 and later

See Also#

bessel_j0(3), bessel_j1(3), bessel_jn(3), bessel_y0(3), bessel_yn(3)

####### fortran-lang intrinsic descriptions

bessel_yn#

Name#

bessel_yn(3) - [MATHEMATICS] Bessel function of the second kind

Syntax#

  result = bessel_yn(n, x)

  result = bessel_yn(n1, n2, x)

Description#

bessel_yn(n, x) computes the Bessel function of the second kind of order n of x. If n and x are arrays, their ranks and shapes shall conform.

bessel_yn(n1, n2, x) returns an array with the Bessel function|Bessel functions of the first kind of the orders n1 to n2.

Arguments#

  • n

    Shall be a scalar or an array of type integer.

  • n1

    Shall be a non-negative scalar of type integer.

  • n2

    Shall be a non-negative scalar of type integer.

  • x

    Shall be a scalar or an array of type real; for bessel_yn(n1, n2, x) it shall be scalar.

Returns#

The return value is real. It has the same kind as x.

Examples#

Sample program:

program demo_besyn
use, intrinsic :: iso_fortran_env, only : real_kinds, &
& real32, real64, real128
implicit none
real(kind=real64) :: x = 1.0_real64
  write(*,*) x,bessel_yn(5,x)
end program demo_besyn

Results:

      1.0000000000000000       -260.40586662581222     

Standard#

Fortran 2008 and later

See Also#

bessel_j0(3), bessel_j1(3), bessel_jn(3), bessel_y0(3), bessel_y1(3)

####### fortran-lang intrinsic descriptions

erf#

Name#

erf(3) - [MATHEMATICS] Error function

Syntax#

result = erf(x)

Description#

erf(x) computes the error function of x, defined as $$ \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt. $$

Arguments#

  • x

    The type shall be real.

Returns#

The return value is of type real, of the same kind as x and lies in the range -1 <= erf(x) <= 1 .

Examples#

Sample program:

program demo_erf
use, intrinsic :: iso_fortran_env, only : real_kinds, &
 & real32, real64, real128
implicit none
real(kind=real64) :: x = 0.17_real64
    write(*,*)x, erf(x)
end program demo_erf

Results:

     0.17000000000000001       0.18999246120180879     

Standard#

Fortran 2008 and later

See also#

erfc(3)

####### fortran-lang intrinsic descriptions

erfc#

Name#

erfc(3) - [MATHEMATICS] Complementary error function

Syntax#

result = erfc(x)

   elemental function erfc(x)
   real(kind=KIND) :: erfc
   real(kind=KIND),intent(in) :: x

Description#

erfc(x) computes the complementary error function of x. Simpy put this is equivalent to 1 - erf(x), but erfc is provided because of the extreme loss of relative accuracy if erf(x) is called for large x and the result is subtracted from 1.

erfc(x) is defined as

$$ \text{erfc}(x) = 1 - \text{erf}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt. $$

Arguments#

  • x

    The type shall be real.

Returns#

The return value is of type real and of the same kind as x. It lies in the range

0 <= erfc(x) <= 2.

Examples#

Sample program:

program demo_erfc
use, intrinsic :: iso_fortran_env, only : &
 & real_kinds, real32, real64, real128
implicit none
real(kind=real64) :: x = 0.17_real64
    write(*,*)x, erfc(x)
end program demo_erfc

Results:

     0.17000000000000001       0.81000753879819121     

Standard#

Fortran 2008 and later

See also#

erf(3)

####### fortran-lang intrinsic descriptions license: MIT) @urbanjost

erfc_scaled#

Name#

erfc_scaled(3) - [MATHEMATICS] Error function

Syntax#

result = erfc_scaled(x)

Description#

erfc_scaled(x) computes the exponentially-scaled complementary error function of x:

$$ e^{x^2} \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt. $$

Arguments#

  • x

    The type shall be real.

Returns#

The return value is of type real and of the same kind as x.

Examples#

Sample program:

program demo_erfc_scaled
implicit none
real(kind(0.0d0)) :: x = 0.17d0
   x = erfc_scaled(x)
   print *, x 
end program demo_erfc_scaled

Results:

     0.83375830214998126     

Standard#

Fortran 2008 and later

####### fortran-lang intrinsic descriptions

gamma#

Name#

gamma(3) - [MATHEMATICS] Gamma function, which yields factorials for positive whole numbers

Syntax#

x = gamma(x)

Description#

gamma(x) computes Gamma of x. For positive whole number values of n the Gamma function can be used to calculate factorials, as (n-1)! == gamma(real(n)). That is

n! == gamma(real(n+1))

$$ \Gamma(x) = \int_0**\infty t**{x-1}{\mathrm{e}}**{-t}\,{\mathrm{d}}t $$

Arguments#

  • x

    Shall be of type real and neither zero nor a negative integer.

Returns#

The return value is of type real of the same kind as x.

Examples#

Sample program:

program demo_gamma
use, intrinsic :: iso_fortran_env, only : wp=>real64
implicit none
real :: x, xa(4)
integer :: i

   x = gamma(1.0) 
   write(*,*)'gamma(1.0)=',x

   ! elemental
   xa=gamma([1.0,2.0,3.0,4.0])
   write(*,*)xa
   write(*,*)

   ! gamma(3) is related to the factorial function
   do i=1,20
      ! check value is not too big for default integer type
      if(factorial(i).gt.huge(0))then
         write(*,*)i,factorial(i)
      else
         write(*,*)i,factorial(i),int(factorial(i))
      endif
   enddo
   ! more factorials
   FAC: block
   integer,parameter :: n(*)=[0,1,5,11,170]
   integer :: j
      do j=1,size(n)
         write(*,'(*(g0,1x))')'factorial of', n(j),' is ', &
          & product([(real(i,kind=wp),i=1,n(j))]),  &
          & gamma(real(n(j)+1,kind=wp))
      enddo
   endblock FAC

contains

function factorial(i) result(f)
integer,parameter :: dp=kind(0d0)
integer,intent(in) :: i
real :: f
   if(i.le.0)then
      write(*,'(*(g0))')'<ERROR> gamma(3) function value ',i,' <= 0'
      stop      '<STOP> bad value in gamma function'
   endif
   f=gamma(real(i+1))
end function factorial

end program demo_gamma

Results:

    gamma(1.0)=   1.000000    
      1.000000       1.000000       2.000000       6.000000    
    
              1   1.000000               1
              2   2.000000               2
              3   6.000000               6
              4   24.00000              24
              5   120.0000             120
              6   720.0000             720
              7   5040.000            5040
              8   40320.00           40320
              9   362880.0          362880
             10   3628800.         3628800
             11  3.9916800E+07    39916800
             12  4.7900160E+08   479001600
             13  6.2270208E+09
             14  8.7178289E+10
             15  1.3076744E+12
             16  2.0922791E+13
             17  3.5568741E+14
             18  6.4023735E+15
             19  1.2164510E+17
             20  2.4329020E+18
   factorial of 0  is  1.000000000000000 1.000000000000000
   factorial of 1  is  1.000000000000000 1.000000000000000
   factorial of 5  is  120.0000000000000 120.0000000000000
   factorial of 11  is  39916800.00000000 39916800.00000000
   factorial of 170  is  .7257415615307994E+307 .7257415615307999E+307

Standard#

Fortran 2008 and later

See Also#

Logarithm of the Gamma function: log_gamma(3)

Wikipedia: Gamma_function

####### fortran-lang intrinsic descriptions

log_gamma#

Name#

log_gamma(3) - [MATHEMATICS] Logarithm of the Gamma function

Syntax#

x = log_gamma(x)

Description#

log_gamma(x) computes the natural logarithm of the absolute value of the Gamma function.

Arguments#

  • x

    Shall be of type real and neither zero nor a negative integer.

Returns#

The return value is of type real of the same kind as x.

Examples#

Sample program:

program demo_log_gamma
implicit none
real :: x = 1.0
   write(*,*)x,log_gamma(x) ! returns 0.0
end program demo_log_gamma

Results:

      1.00000000       0.00000000    

Standard#

Fortran 2008 and later

See Also#

Gamma function: gamma(3)

####### fortran-lang intrinsic descriptions

log_gamma#

Name#

log_gamma(3) - [MATHEMATICS] Logarithm of the Gamma function

Syntax#

x = log_gamma(x)

Description#

log_gamma(x) computes the natural logarithm of the absolute value of the Gamma function.

Arguments#

  • x

    Shall be of type real and neither zero nor a negative integer.

Returns#

The return value is of type real of the same kind as x.

Examples#

Sample program:

program demo_log_gamma
implicit none
real :: x = 1.0
   write(*,*)x,log_gamma(x) ! returns 0.0
end program demo_log_gamma

Results:

      1.00000000       0.00000000    

Standard#

Fortran 2008 and later

See Also#

Gamma function: gamma(3)

####### fortran-lang intrinsic descriptions

norm2#

Name#

norm2(3) - [MATHEMATICS] Euclidean vector norm

Syntax#

result = norm2(array, dim)

real function result norm2(array, dim)

   real,intent(in) :: array(..)
   integer,intent(in),optional :: dim

Description#

Calculates the Euclidean vector norm (L_2 norm) of array along dimension dim.

Arguments#

  • array

    Shall be an array of type real.

  • dim

    shall be a scalar of type integer with a value in the range from 1 to rank(array).

Returns#

The result is of the same type as array.

If dim is absent, a scalar with the square root of the sum of squares of the elements of array is returned.

Otherwise, an array of rank n-1, where n equals the rank of array, and a shape similar to that of array with dimension DIM dropped is returned.

Examples#

Sample program:

program demo_norm2
implicit none
integer :: i

real :: x(3,3) = reshape([ &
   1, 2, 3, &
   4, 5 ,6, &
   7, 8, 9  &
],shape(x),order=[2,1])

write(*,*) 'x='
write(*,'(4x,3f4.0)')transpose(x)

write(*,*) 'norm2(x)=',norm2(x)

write(*,*) 'x**2='
write(*,'(4x,3f4.0)')transpose(x**2)
write(*,*)'sqrt(sum(x**2))=',sqrt(sum(x**2))

end program demo_norm2

Results:

 x=
      1.  2.  3.
      4.  5.  6.
      7.  8.  9.
 norm2(x)=   16.88194    
 x**2=
      1.  4.  9.
     16. 25. 36.
     49. 64. 81.
 sqrt(sum(x**2))=   16.88194    

Standard#

Fortran 2008 and later

See Also#

product(3), sum(3), hypot(3)

####### fortran-lang intrinsic descriptions